Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  The genetic basis of a plant–insect coevolutionary key innovation

Wheat, C. W., Vogel, H., Wittstock, U., Braby, M., Underwood, D., & Mitchell Olds, T. (2007). The genetic basis of a plant–insect coevolutionary key innovation. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20427-20431. doi:10.1073/pnas.0706229104.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
GER231.pdf (Verlagsversion), 0B
 
Datei-Permalink:
-
Name:
GER231.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Chemical Ecology, MJCO; )
MIME-Typ / Prüfsumme:
application/octet-stream
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2154447/ (Verlagsversion)
Beschreibung:
OA
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Wheat, C. W., Autor
Vogel, H.1, Autor           
Wittstock, U.2, Autor           
Braby, M., Autor
Underwood, D., Autor
Mitchell Olds, Thomas, Autor
Affiliations:
1Department of Entomology, MPI for Chemical Ecology, Max Planck Society, ou_421895              
2Department of Biochemistry, MPI for Chemical Ecology, Max Planck Society, ou_421893              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Ehrlich and Raven formally introduced the concept of stepwise coevolution using butterfly and angiosperm interactions in an attempt to account for the impressive biological diversity of these groups. However, many biologists currently envision butterflies evolving 50 to 30 million years (Myr) after the major angiosperm radiation and thus reject coevolutionary origins of butterfly biodiversity. The unresolved central tenet of Ehrlich and Raven's theory is that evolution of plant chemical defenses is followed closely by biochemical adaptation in insect herbivores, and that newly evolved detoxification mechanisms result in adaptive radiation of herbivore lineages. Using one of their original butterfly-host plant systems, the Pieridae, we identify a pierid glucosinolate detoxification mechanism, nitrile-specifier protein (NSP), as a key innovation. Larval NSP activity matches the distribution of glucosinolate in their host plants. Moreover, by using five different temporal estimates, NSP seems to have evolved shortly after the evolution of the host plant group (Brassicales) (≈10 Myr). An adaptive radiation of these glucosinolate-feeding Pierinae followed, resulting in significantly elevated species numbers compared with related clades. Mechanistic understanding in its proper historical context documents more ancient and dynamic plant–insect interactions than previously envisioned. Moreover, these mechanistic insights provide the tools for detailed molecular studies of coevolution from both the plant and insect perspectives.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2007
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: GER231
DOI: 10.1073/pnas.0706229104
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
  Andere : Proceedings of the National Academy of Sciences of the USA
  Andere : Proc. Acad. Sci. U.S.A.
  Kurztitel : PNAS
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: - Band / Heft: 104 (51) Artikelnummer: - Start- / Endseite: 20427 - 20431 Identifikator: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230