English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

Wicher, D., Derst, C., Gautier, H., Lapied, B., Heinemann, S., & Agricola, H.-J. (2007). The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity. Frontiers in Cellular Neuroscience, 1: 3. doi:10.3389/neuro.03.003.2007.

Item is

Files

show Files
hide Files
:
HAN036.pdf (Publisher version), 0B
Name:
HAN036.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.3389/neuro.03.003.2007 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Wicher, Dieter1, Author           
Derst, C., Author
Gautier, H., Author
Lapied, B., Author
Heinemann, S., Author
Agricola, H.-J., Author
Affiliations:
1Department of Evolutionary Neuroethology, Prof. B. S. Hansson, MPI for Chemical Ecology, Max Planck Society, ou_421894              

Content

show
hide
Free keywords: -
 Abstract: The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK) in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK) in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR), we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM) neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM) due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH): PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

Details

show
hide
Language(s):
 Dates: 2007
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.3389/neuro.03.003.2007
Other: HAN036
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in Cellular Neuroscience
  Other : Front. Cell. Neurosci.
  Abbreviation : FNCEL
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Frontiers Research Foundation
Pages: - Volume / Issue: 1 Sequence Number: 3 Start / End Page: - Identifier: ISSN: 1662-5102
CoNE: https://pure.mpg.de/cone/journals/resource/1662-5102