English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Curvature estimates for surfaces with bounded mean curvature

Bourni, T., & Tinaglia, G. (2012). Curvature estimates for surfaces with bounded mean curvature. Transactions of the American Mathematical Society, 364(11 ), 5813-5828. Retrieved from http://arxiv.org/abs/1007.3425.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0012-C6CB-F Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-8FBF-3
Genre: Journal Article

Files

show Files
hide Files
:
1007.3425 (Preprint), 162KB
Name:
1007.3425
Description:
File downloaded from arXiv at 2010-09-07 14:04
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
1007.3425v3.pdf (Preprint), 170KB
Name:
1007.3425v3.pdf
Description:
Version 3
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
TransAMS-2012-05487-0.pdf (Any fulltext), 243KB
Name:
TransAMS-2012-05487-0.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Bourni, Theodora1, Author              
Tinaglia, Giuseppe, Author
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, Golm, DE, ou_24012              

Content

show
hide
Free keywords: Mathematics, Differential Geometry, math.DG, MSC 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]
 Abstract: Estimates for the norm of the second fundamental form, $|A|$, play a crucial role in studying the geometry of surfaces. In fact, when $|A|$ is bounded the surface cannot bend too sharply. In this paper we prove that for an embedded geodesic disk with bounded $L^2$ norm of $|A|$, $|A|$ is bounded at interior points, provided that the $W^{1,p}$ norm of its mean curvature is sufficiently small, $p>2$. In doing this we generalize some renowned estimates on $|A|$ for minimal surfaces.

Details

show
hide
Language(s):
 Dates: 2010-07-202012
 Publication Status: Published in print
 Pages: 17 pages, no figures, submitted
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1007.3425
URI: http://arxiv.org/abs/1007.3425
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Transactions of the American Mathematical Society
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 364 (11 ) Sequence Number: - Start / End Page: 5813 - 5828 Identifier: -