English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Adaptive frequency decomposition of EEG with subsequent expert system analysis

Herrmann, C. S., Arnold, T., Visbeck, A., Hundemer, H. P., & Hopf, H. C. (2001). Adaptive frequency decomposition of EEG with subsequent expert system analysis. Computers in Biology and Medicine (Elmsford, NY), 31(6), 407-427. doi:10.1016/S0010-4825(01)00017-8.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0010-9AEC-C Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002C-4579-1
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Herrmann, Christoph S.1, Author              
Arnold, Thomas1, Author              
Visbeck, A., Author
Hundemer, H. P., Author
Hopf, H. C., Author
Affiliations:
1MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634574              

Content

show
hide
Free keywords: EEG; Spectral analysis; Expert system; Fuzzy logic
 Abstract: We present a hybrid system for automatic analysis of clinical routine EEG, comprising a spectral analysis and an expert system. EEG raw data are transformed into the time–frequency domain by the so-called adaptive frequency decomposition. The resulting frequency components are converted into pseudo-linguistic facts via fuzzification. Finally, an expert system applies symbolic rules formulated by the neurologist to evaluate the extracted EEG features. The system detects artefacts, describes alpha rhythm by frequency, amplitude, and stability and after artefact rejection detects pathologic slow activity. All results are displayed as linguistic terms, numerical values and maps of temporal extent, giving an overview about the clinical routine EEG.

Details

show
hide
Language(s): eng - English
 Dates: 2001
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 239177
ISI: 000171781400001
Other: P6723
DOI: 10.1016/S0010-4825(01)00017-8
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Computers in Biology and Medicine (Elmsford, NY)
  Other : Comput Biol Med
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Pergamon
Pages: - Volume / Issue: 31 (6) Sequence Number: - Start / End Page: 407 - 427 Identifier: ISSN: 0010-4825
CoNE: https://pure.mpg.de/cone/journals/resource/954925392327