hide
Free keywords:
-
Abstract:
Cytoarchitectonic fields of the human neocortex are defined by characteristic variations in the composition of a general six-layer structure. It is commonly accepted that these fields correspond to functionally homogeneous entities. Diligent techniques were developed to characterize cytoarchitectonic fields by staining sections of post-mortem brains and subsequent statistical evaluation. Fields were found to show a considerable interindividual variability in extent and relation to macroscopic anatomical landmarks. With upcoming new high-resolution magnetic resonance imaging (MRI) protocols, it appears worthwhile to examine the feasibility of characterizing the neocortical fine-structure from anatomical MRI scans, thus, defining neocortical fields by in vivo techniques. A fixated brain hemisphere was scanned at a resolution of approximately 0.3 mm. After correcting for intensity inhomogeneities in the dataset, the cortex boundaries (the white/grey matter and grey matter/background interfaces) were determined as a triangular mesh. Radial intensity profiles following the shortest path through the cortex were computed and characterized by a sparse set of features. A statistical similarity measure between features of different regions was defined, and served to define the extent of Brodmann’s Areas 4, 17, 44 and 45 in this dataset.