English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Is it tonotopy after all?

Schönwiesner, M., von Cramon, D. Y., & Rübsamen, R. (2002). Is it tonotopy after all? NeuroImage, 17(3), 1144-1161. doi:10.1006/nimg.2002.1250.

Item is

Files

show Files
hide Files
:
16471.pdf (Any fulltext), 920KB
Name:
16471.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Schönwiesner, Marc1, Author           
von Cramon, D. Yves1, Author           
Rübsamen, Rudolf, Author
Affiliations:
1MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634574              

Content

show
hide
Free keywords: -
 Abstract: In this functional MRI study the frequency-dependent localization of acoustically evoked BOLD responses within the human auditory cortex was investigated. A blocked design was employed, consisting of periods of tonal stimulation (random frequency modulations with center frequencies 0.25, 0.5, 4.0, and 8.0 kHz) and resting periods during which only the ambient scanner noise was audible. Multiple frequency-dependent activation sites were reliably demonstrated on the surface of the auditory cortex. The individual gyral pattern of the superior temporal plane (STP), especially the anatomy of Heschl's gyrus (HG), was found to be the major source of interindividual variability. Considering this variability by tracking the frequency responsiveness to the four stimulus frequencies along individual Heschl's gyri yielded medio-lateral gradients of responsiveness to high frequencies medially and low frequencies laterally. It is, however, argued that with regard to the results of electrophysiological and cytoarchitectonical studies in humans and in nonhuman primates, the multiple frequency-dependent activation sites found in the present study as well as in other recent fMRI investigations are no direct indication of tonotopic organization of cytoarchitectonical areas. An alternative interpretation is that the activation sites correspond to different cortical fields, the topological organization of which cannot be resolved with the current spatial resolution of fMRI. In this notion, the detected frequency selectivity of different cortical areas arises from an excess of neurons engaged in the processing of different acoustic features, which are associated with different frequency bands. Differences in the response properties of medial compared to lateral and frontal compared to occipital portions of HG strongly support this notion.

Details

show
hide
Language(s): eng - English
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 239369
ISI: 000179012800005
Other: P6833
DOI: 10.1006/nimg.2002.1250
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NeuroImage
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Orlando, FL : Academic Press
Pages: - Volume / Issue: 17 (3) Sequence Number: - Start / End Page: 1144 - 1161 Identifier: ISSN: 1053-8119
CoNE: https://pure.mpg.de/cone/journals/resource/954922650166