日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

Daunizeau, J., Friston, K. J., & Kiebel, S. J. (2009). Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D: Nonlinear Phenomena, 238(21), 2089-2118. doi:10.1016/j.physd.2009.08.002.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Daunizeau, Jean, 著者
Friston, Karl J., 著者
Kiebel, Stefan J.1, 著者           
所属:
1External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: Approximate inference; Model comparison; Variational Bayes; EM; Laplace approximation; Free-energy; SDE; Nonlinear stochastic dynamical systems; Nonlinear state-space models; DCM; Kalman filter; Rauch smoother
 要旨: In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

資料詳細

表示:
非表示:
言語:
 日付: 2009
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): eDoc: 512056
その他: P10677
DOI: 10.1016/j.physd.2009.08.002
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Physica D: Nonlinear Phenomena
  その他 : Physica D
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Amsterdam : North-Holland
ページ: - 巻号: 238 (21) 通巻号: - 開始・終了ページ: 2089 - 2118 識別子(ISBN, ISSN, DOIなど): ISSN: 0167-2789
CoNE: https://pure.mpg.de/cone/journals/resource/954925482641