English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Coherence effects in vacuum-induced processes

Kiffner, M. (2007). Coherence effects in vacuum-induced processes. PhD Thesis, Ruprecht-Karls Universität, Heidelberg.

Item is

Files

show Files
hide Files
:
2007-019.pdf (Any fulltext), 2MB
Name:
2007-019.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Kiffner, Martin1, Author           
Affiliations:
1Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society, ou_904546              

Content

show
hide
Free keywords: -
 Abstract: Quantum interference and coherence effects in the interaction of atoms with the quantized electromagnetic field are investigated theoretically. A general master equation for the description of atom-field interactions is introduced. The interplay of the concepts of complementarity and interference in the time-energy domain are studied on the basis of the fluorescence light emitted by a single laser-driven atom, where the coherence of spontaneous processes gives rise to quantum interference in the spectrum of resonance fluorescence. The vacuum-induced dipole-dipole interaction in pairs of multi-level atoms is analyzed. It is shown that the interaction between orthogonal transition dipole moments of different atoms does not only in- fluence the system dynamics crucially, but implies that the few-level approximation in general cannot be applied to near-degenerate Zeeman sublevels of the atomic level scheme. Potential applications of dipole-dipole interacting multi-level atoms for the implementation of decoherence-free subspaces and the generation of entanglement between atomic states are examined. The generation of an entangled state of the radiation field with a macroscopic number of photons is discussed on the basis of a single-atom laser.

Details

show
hide
Language(s): eng - English
 Dates: 2007-05-16
 Publication Status: Accepted / In Press
 Pages: X, 154 S. : Ill., graph. Darst.
 Publishing info: Heidelberg : Ruprecht-Karls Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 320926
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show