English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 3. Evaluation by means of case studies

Mangold, A., De Backer, H., De Paepe, B., Dewitte, S., Chiapello, I., Derimian, Y., et al. (2011). Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 3. Evaluation by means of case studies. Journal of Geophysical Research: Atmospheres, 116: D03302. doi:10.1029/2010JD014864.

Item is

Files

show Files
hide Files
:
Mangold_et_al-2011-Journal_of_Geophysical_Research%3A_Atmospheres_%281984-2012%29.pdf (Publisher version), 5MB
Name:
Mangold_et_al-2011-Journal_of_Geophysical_Research%3A_Atmospheres_%281984-2012%29.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Mangold, A., Author
De Backer, H., Author
De Paepe, B., Author
Dewitte, S., Author
Chiapello, I., Author
Derimian, Y., Author
Kacenelenbogen, M., Author
Léon, J.-F., Author
Huneeus, N., Author
Schulz, M., Author
Ceburnis, D., Author
O'Dowd, C., Author
Flentje, H., Author
Kinne, S.1, Author           
Benedetti, A., Author
Morcrette, J. J., Author
Boucher, O., Author
Affiliations:
1Observations and Process Studies, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913575              

Content

show
hide
Free keywords: -
 Abstract: A near real-time system for assimilation and forecasts of aerosols, greenhouse and trace gases, extending the ECMWF Integrated Forecasting System (IFS), has been developed in the framework of the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The GEMS aerosol modeling system is novel as it is the first aerosol model fully coupled to a numerical weather prediction model with data assimilation. A reanalysis of the period 2003-2009 has been carried out with the same system. During its development phase, the aerosol system was first run for the time period January 2003 to December 2004 and included sea salt, desert dust, organic matter, black carbon, and sulfate aerosols. In the analysis, Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) at 550 nm over ocean and land (except over bright surfaces) was assimilated. This work evaluates the performance of the aerosol system by means of case studies. The case studies include (1) the summer heat wave in Europe in August 2003, characterized by forest fire aerosol and conditions of high temperatures and stagnation, favoring photochemistry and secondary aerosol formation, (2) a large Saharan dust event in March 2004, and (3) periods of high and low sea salt aerosol production. During the heat wave period in 2003, the linear correlation coefficients between modeled and observed AOD (550 nm) and between modeled and observed PM2.5 mass concentrations are 0.82 and 0.71, respectively, for all investigated sites together. The AOD is slightly and the PM2.5 mass concentration is clearly overestimated by the aerosol model during this period. The simulated sulfate mass concentration is significantly correlated with observations but is distinctly overestimated. The horizontal and vertical locations of the main features of the aerosol distribution during the Saharan dust outbreak are generally well captured, as well as the timing of the AOD peaks. The aerosol model simulates winter sea salt AOD reasonably well, however, showing a general overestimation. Summer sea salt events show a better agreement. Overall, the assimilation of MODIS AOD data improves the subsequent aerosol predictions when compared with observations, in particular concerning the correlation and AOD peak values. The assimilation is less effective in correcting a positive (PM2.5, sulfate mass concentration, Angstrm exponent) or negative (desert dust plume AOD) model bias. Copyright 2011 by the American Geophysical Union.

Details

show
hide
Language(s): eng - English
 Dates: 2011
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1029/2010JD014864
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Atmospheres
  Abbreviation : J. Geophys. Res. - D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 116 Sequence Number: D03302 Start / End Page: - Identifier: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264_1