English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Interpreting the cloud cover - aerosol optical depth relationship found in satellite data using the general circulation model

Quaas, J., Stevens, B., Stier, P., & Lohmann, U. (2010). Interpreting the cloud cover - aerosol optical depth relationship found in satellite data using the general circulation model. Atmospheric Chemistry and Physics, 10, 6129-6135. doi:10.5194/acp-10-6129-2010.

Item is

Files

show Files
hide Files
:
acp-10-6129-2010.pdf (Publisher version), 272KB
Name:
acp-10-6129-2010.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Quaas, J.1, 2, Author           
Stevens, B.1, Author           
Stier, P.1, Author           
Lohmann, U.1, Author           
Affiliations:
1The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913550              
2Emmy Noether Junior Research Group Cloud-Climate Feedbacks, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913571              

Content

show
hide
Free keywords: -
 Abstract: Statistical analysis of satellite data shows a positive correlation between aerosol optical depth (AOD) and total cloud cover (TCC). Reasons for this relationship have been disputed in recent literature. The aim of this study is to explore how different processes contribute to one model's analog of the positive correlation between aerosol optical depth and total cloud cover seen in the satellite retrievals. We compare the slope of the linear regression between the logarithm of TCC and the logarithm of AOD, or the strength of the relationship, as derived from three satellite data sets to the ones simulated by a global aerosol-climate model. We analyse model results from two different simulations with and without a parameterisation of aerosol indirect effects, and using dry compared to humidified AOD. Perhaps not surprisingly we find that no single one of the hypotheses discussed in the literature is able to uniquely explain the positive relationship. However the dominant contribution to the model's AOD-TCC relationship can be attributed to aerosol swelling in regions where humidity is high and clouds are coincidentally found. This finding leads us to hypothesise that much of the AOD-TCC relationship seen in the satellite data is also carried by such a process, rather than the direct effects of the aerosols on the cloud fields themselves.

Details

show
hide
Language(s): eng - English
 Dates: 2010
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
  Alternative Title : Atmos. Chem. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 10 Sequence Number: - Start / End Page: 6129 - 6135 Identifier: -