English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium

Zanchettin, D., Rubino, A., & Jungclaus, J. H. (2010). Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophysical Research Letters, 37: L14702. doi:10.1029/2010GL043717.

Item is

Files

show Files
hide Files
:
2010GL043717.pdf (Publisher version), 2MB
Name:
2010GL043717.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Zanchettin, D.1, Author           
Rubino, A., Author
Jungclaus, J. H.1, Author                 
Affiliations:
1Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913553              

Content

show
hide
Free keywords: -
 Abstract: Observed climate time series covering several centuries are often characterized by fluctuations on multidecadal-to-centennial timescales. These are not homogeneously distributed in time: Instead, they appear within irregularly intermittent temporal intervals, whose irregular duration varies, in general, with the signal fluctuation frequency. A similar irregularly intermittent, frequency-dependent appearance of energetic fluctuations is found in long-term Earth system model integrations, consisting of a multi-millennia control experiment (i.e., an unforced simulation) and forced simulations covering the last millennium. Here, for the first time, we investigate the long-term relative importance of internal and externally-driven variability and their possible interferences on Global Surface Temperature (GST). Multidecadal GST fluctuations are mostly associated to internal variability. Externally-forced perturbations acting predominantly on centennial timescales tend to overwhelm such variability and to enhance O(∼200 years) GST fluctuations. Externally-forced perturbations tend also to correspond to major changes in the coherency among internal climate processes, and among them and GST. Copyright 2010 by the American Geophysical Union.

Details

show
hide
Language(s): eng - English
 Dates: 2010
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 510706
DOI: 10.1029/2010GL043717
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Letters
  Alternative Title : Geophys. Res. Letts.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 37 Sequence Number: L14702 Start / End Page: - Identifier: -