English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multiscale models for cumulus cloud dynamics

Stechmann, S. N., & Stevens, B. (2010). Multiscale models for cumulus cloud dynamics. Journal of the Atmospheric Sciences, 67, 3269-3285. doi:10.1175/2010JAS3380.1.

Item is

Files

show Files
hide Files
:
[15200469 - Journal of the Atmospheric Sciences] Multiscale Models for Cumulus Cloud Dynamics.pdf (Publisher version), 768KB
Name:
[15200469 - Journal of the Atmospheric Sciences] Multiscale Models for Cumulus Cloud Dynamics.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Stechmann, S. N., Author
Stevens, Bjorn1, Author                 
Affiliations:
1Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913570              

Content

show
hide
Free keywords: -
 Abstract: Cumulus clouds involve processes on a vast range of scales-including cloud droplets, turbulent mixing, and updrafts and downdrafts-and it is often difficult to determine how processes on different scales interact with each other. In this article, several multiscale asymptotic models are derived for cumulus cloud dynamics in order to (i) provide a systematic scale analysis on each scale and (ii) clarify the nature of interactions between different scales. In terms of scale analysis, it is shown that shallow cumulus updrafts can be described by balanced dynamics with a balance between source terms and ascent/descent; this is a cloud-scale version of socalled weak-temperature-gradient models. In terms of multiscale interactions, a model is derived that connects these balanced updrafts to the fluctuations within the balanced updraft envelope. These fluctuations describe parcels and updraft pulses, and this model encompasses some of the multiscale aspects of entrainment. In addition to this shallow cumulus model, to provide a broad picture of general cumulus dynamics, multiscale models are also derived for other scales; these include models for parcels and subparcel turbulent mixing and models for deep cumulus. Broadly speaking, the differences between the shallow and deep cases convey the notion that shallow cumulus dynamics are parcel dominated, whereas deep cumulus dynamics are updraft dominated; this is largely due to the difference in the apparent magnitude of the background temperature stratification. In addition to their use in guiding theory, the multiscale models also provide a framework for multiscale numerical simulations. © 2010 American Meteorological Society.

Details

show
hide
Language(s): eng - English
 Dates: 2010
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1175/2010JAS3380.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the Atmospheric Sciences
  Abbreviation : J. Atmos. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Meteorological Society
Pages: - Volume / Issue: 67 Sequence Number: - Start / End Page: 3269 - 3285 Identifier: ISSN: 0022-4928
CoNE: https://pure.mpg.de/cone/journals/resource/954925418030