English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice-atmosphere model

Doescher, R., Wyser, K., Meier, H. E. M., Qian, M., & Redler, R. (2010). Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice-atmosphere model. Climate Dynamics, 34, 1157-1176. doi:10.1007/s00382-009-0567-y.

Item is

Files

show Files
hide Files
:
ClimDyn_34-2010-1157.pdf (Publisher version), 3MB
Name:
ClimDyn_34-2010-1157.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Doescher, R., Author
Wyser, K., Author
Meier, H. E. M., Author
Qian, M., Author
Redler, R.1, 2, Author           
Affiliations:
1The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913552              
2Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913553              

Content

show
hide
Free keywords: -
 Abstract: The relative importance of regional processes inside the Arctic climate system and the large scale atmospheric circulation for Arctic interannual climate variability has been estimated with the help of a regional Arctic coupled ocean-ice-atmosphere model. The study focuses on sea ice and surface climate during the 1980s and 1990s. Simulations agree reasonably well with observations. Correlations between the winter North Atlantic Oscillation index and the summer Arctic sea ice thickness and summer sea ice extent are found. Spread of sea ice extent within an ensemble of model runs can be associated with a surface pressure gradient between the Nordic Seas and the Kara Sea. Trends in the sea ice thickness field are widely significant and can formally be attributed to large scale forcing outside the Arctic model domain. Concerning predictability, results indicate that the variability generated by the external forcing is more important in most regions than the internally generated variability. However, both are in the same order of magnitude. Local areas such as the Northern Greenland coast together with Fram Straits and parts of the Greenland Sea show a strong importance of internally generated variability, which is associated with wind direction variability due to interaction with atmospheric dynamics on the Greenland ice sheet. High predictability of sea ice extent is supported by north-easterly winds from the Arctic Ocean to Scandinavia.

Details

show
hide
Language(s): eng - English
 Dates: 2010
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climate Dynamics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 34 Sequence Number: - Start / End Page: 1157 - 1176 Identifier: -