English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Meridional transport and deposition of atmospheric 10Be

Heikkilä, U., Beer, J., & Feichter, J. (2009). Meridional transport and deposition of atmospheric 10Be. Atmospheric Chemistry and Physics, 9, 515-527. Retrieved from http://www.atmos-chem-phys.net/9/515/2009/acp-9-515-2009.html.

Item is

Files

show Files
hide Files
:
acp-9-515-2009.pdf (Publisher version), 2MB
Name:
acp-9-515-2009.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Heikkilä, U., Author
Beer, J., Author
Feichter, J.1, Author           
Affiliations:
1The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913550              

Content

show
hide
Free keywords: -
 Abstract: 10Be concentrations measured in ice cores exhibit larger temporal variability than expected based on theoretical production calculations. To investigate whether this is due to atmospheric transport a general circulation model study is performed with the 10Be production divided into stratospheric, tropospheric tropical, tropospheric subtropical and tropospheric polar sources. A control run with present day 10Be production rate is compared with a run during a geomagnetic minimum. The present 10Be production rate is 4–5 times higher at high latitudes than in the tropics whereas during a period of no geomagnetic dipole field it is constant at all latitudes. The 10Be deposition fluxes, however, show a very similar latitudinal distribution in both the present day and the geomagnetic minimum run indicating that 10Be is well mixed in the atmosphere before its deposition. This is also confirmed by the fact that the contribution of 10Be produced in the stratosphere is dominant (55%–70%) and relatively constant at all latitudes. The contribution of stratospheric 10Be is approximately 70% in Greenland and 60% in Antarctica reflecting the weaker stratosphere-troposphere air exchange in the Southern Hemisphere.

Details

show
hide
Language(s): eng - English
 Dates: 2009
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
  Alternative Title : Atmos. Chem. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 9 Sequence Number: - Start / End Page: 515 - 527 Identifier: -