English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes

Santer, B. D., Sausen, R., Wigley, T. M. L., Boyle, J. S., AchutaRao, K., Doutriaux, C., et al. (2003). Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. Journal of Geophysical Research: Atmospheres, 108: 4002. doi:10.1029/2002JD002258.

Item is

Files

show Files
hide Files
:
Journal of Geophysical Research Atmospheres - 2003 - Santer - Behavior of tropopause height and atmospheric temperature in.pdf (Publisher version), 4MB
Name:
Journal of Geophysical Research Atmospheres - 2003 - Santer - Behavior of tropopause height and atmospheric temperature in.pdf
Description:
Archivkopie
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2003
Copyright Info:
© AGU
License:
-

Locators

show

Creators

show
hide
 Creators:
Santer, B. D., Author
Sausen, R., Author
Wigley, T. M. L., Author
Boyle, J. S., Author
AchutaRao, K., Author
Doutriaux, C., Author
Hansen, J. E., Author
Meehl, G. A., Author
Roeckner, Erich1, Author           
Ruedy, R., Author
Schmidt, G., Author
Taylor, K. E., Author
Affiliations:
1Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913569              

Content

show
hide
Free keywords: tropopause height; tropospheric temperatures; stratospheric temperatures; climate modeling; microwave sounding unit
 Abstract: We examine changes in tropopause height, a variable that has hitherto been neglected in climate change detection and attribution studies. The pressure of the lapse rate tropopause, p(LRT), is diagnosed from reanalyses and from integrations performed with coupled and uncoupled climate models. In the National Centers for Environmental Prediction (NCEP) reanalysis, global-mean p(LRT) decreases by 2.16 hPa/decade over 1979-2000, indicating an increase in the height of the tropopause. The shorter European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis has a global-mean p(LRT) trend of -1.13 hPa/decade over 1979-1993. Simulated p(LRT) trends over the past several decades are consistent with reanalysis results. Superimposed on the overall increase in tropopause height in models and reanalyses are pronounced height decreases following the eruptions of El Chichon and Pinatubo. Interpreting these p(LRT) results requires knowledge of both T(z), the initial atmospheric temperature profile, and DeltaT(z), the change in this profile in response to external forcing. T( z) has a strong latitudinal dependence, as does DeltaT( z) for forcing by well-mixed greenhouse gases and stratospheric ozone depletion. These dependencies help explain why overall tropopause height increases in reanalyses and observations are amplified toward the poles. The pronounced increases in tropopause height in the climate change integrations considered here indicate that even AGCMs with coarse vertical resolution can resolve relatively small externally forced changes in tropopause height. The simulated decadal-scale changes in p(LRT) are primarily thermally driven and are an integrated measure of the anthropogenically forced warming of the troposphere and cooling of the stratosphere. Our algorithm for estimating p(LRT) (based on a thermal definition of tropopause height) is sufficiently sensitive to resolve these large-scale changes in atmospheric thermal structure. Our results indicate that the simulated increase in tropopause height over 1979-1997 is a robust, zero-order response of the climate system to forcing by well-mixed greenhouse gases and stratospheric ozone depletion. At the global-mean level, we find agreement between the simulated decadal-scale p(LRT) changes and those estimated from reanalyses. While the agreement between simulated p(LRT) changes and those in NCEP is partly fortuitous (due to excessive stratospheric cooling in NCEP), it is also driven by real pattern similarities. Our work illustrates that changes in tropopause height may be a useful "fingerprint'' of human effects on climate and are deserving of further attention.

Details

show
hide
Language(s): eng - English
 Dates: 2003
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 13055
ISI: 000181498500002
DOI: 10.1029/2002JD002258
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Atmospheres
  Other : JGR-D
  Abbreviation : J. Geophys. Res. - D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 108 Sequence Number: 4002 Start / End Page: - Identifier: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264_1