English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

When sounds become actions: Higher-order representation of newly learnt action sounds in the human motor system

MPS-Authors
/persons/resource/persons20049

Ticini,  Luca Francesco
Max Planck Research Group Body and Self, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19564

Schütz-Bosbach,  Simone
Max Planck Research Group Body and Self, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20097

Weiss,  Carmen
Max Planck Research Group Body and Self, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ticini, L. F., Schütz-Bosbach, S., Weiss, C., Casile, A., & Waszak, F. (2012). When sounds become actions: Higher-order representation of newly learnt action sounds in the human motor system. Journal of Cognitive Neuroscience, 24(2), 464-474. doi:10.1162/jocn_a_00134.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0012-0763-D
Abstract
In the absence of visual information, our brain is able to recognize the actions of others by representing their sounds as a motor event. Previous studies have provided evidence for a somatotopic activation of the listener's motor cortex during perception of the sound of highly familiar motor acts. The present experiments studied (a) how the motor system is activated by action-related sounds that are newly acquired and (b) whether these sounds are represented with reference to extrinsic features related to action goals rather than with respect to lower-level intrinsic parameters related to the specific movements. TMS was used to measure the correspondence between auditory and motor codes in the listener's motor system. We compared the corticomotor excitability in response to the presentation of auditory stimuli void of previous motor meaning before and after a short training period in which these stimuli were associated with voluntary actions. Novel cross-modal representations became manifest very rapidly. By disentangling the representation of the muscle from that of the action's goal, we further showed that passive listening to newly learnt action-related sounds activated a precise motor representation that depended on the variable contexts to which the individual was exposed during testing. Our results suggest that the human brain embodies a higher-order audio-visuo-motor representation of perceived actions, which is muscle-independent and corresponds to the goals of the action.