Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Investigation of arthritic joint destruction by a novel fibroblast-based model.

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Sack, U., Sehm, B., Kahlenberg, F., Murr, A., Lehmann, J., Tannapfel, A., et al. (2005). Investigation of arthritic joint destruction by a novel fibroblast-based model. Annals of the New York Academy of Sciences, 1051, 291-298. doi:10.1196/annals.1361.070.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0012-09C4-3
The key pathologic mechanism in rheumatoid arthritis (RA) is the destruction of cartilage by fibroblasts. In a severe combined immunodeficient (SCID) mouse model, this process can be modulated by gene transfer using invasive LS48 fibroblasts. This study aims to investigate the effect of interleukins (IL) -11 and -12 on cartilage destruction when transferred into LS48, and of IL-15 when transfected into non-invasive 3T3 cells; to compare three transduction systems (a lentiviral vector system, a retroviral vector system, and a particle-mediated gene transfer); and to establish an in vitro cartilage destruction system based on LS48 cells. Transduced fibroblasts were injected into SCID mice knee joints, and disease progression assessed microscopically. Distinctive morphologic pattern revealed invasion of fibroblasts into the articular cartilage by transfected, as well as non-transfected, LS48 cells. IL-12 and IL-15 did not alter swelling or cartilage destruction. Animals treated with IL-11-transfected cells showed reduced cartilage damage but no changes in swelling. Efficacy of gene transfer to establish transfected fibroblasts was shown to be >85% for lentiviral transfer, compared to <10% for retroviral transfer and gene gun. Furthermore, cells were co-incubated with porcine cartilage. Transduction of IL-11 led to a reduction of apoptosis in chondrocytes. These findings suggest that cartilage destruction by invasive fibroblasts can be modulated by gene transfer. Lentiviral vector systems offer the most effective approach for gene transduction. In vitro fibroblast/cartilage co-cultures present a convenient system for the assessment of novel therapeutic strategies toward reduction of articular destruction.