Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Thermal conductivity of Si nanostructures containing defects: Methodology, isotope effects, and phonon trapping

MPG-Autoren
/persons/resource/persons21413

Carbogno,  Christian
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

e035317.pdf
(Verlagsversion), 730KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gibbons, T. M., Kang, B., Estreicher, S. K., & Carbogno, C. (2011). Thermal conductivity of Si nanostructures containing defects: Methodology, isotope effects, and phonon trapping. Physical review / B, 84: 035317. doi:10.1103/PhysRevB.84.035317.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0012-0E4A-4
Zusammenfassung
A first-principles method to calculate the thermal conductivity in nanostructures that may contain defects or impurities is described in detail. The method mimics the so-called “laser-flash” technique to measure thermal conductivities. It starts with first-principles density-functional theory and involves the preparation of various regions of a supercell at slightly different temperatures. The temperature fluctuations are minimized without using a thermostat and, after averaging over random initial conditions, temperature changes as small as 5 K can be monitored (from 120 to 125 K). The changes to the phonon density of states and the specific heat induced by several atomic percent of impurities are discussed. The thermal conductivity of Si supercells is calculated as a function of the temperature and of the impurity content. For most impurities, the drop in thermal conductivity is unremarkable. However, there exist narrow ranges of impurity parameters (mass, bond strength, etc.) for which substantial drops in the thermal conductivity are predicted. These drops are isotope dependent and appear to be related to the vibrational lifetime of specific impurity-related modes.