日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera.

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Barbara, G. S., Zube, C., Rybak, J., Gauthier, M., & Grünewald, B. (2005). Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 191(9), 823-836. doi:10.1007/s00359-005-0007-3.


引用: https://hdl.handle.net/11858/00-001M-0000-0012-0F6A-3
要旨
The honeybee, Apis mellifera, is a valuable model system for the study of olfactory coding and its learning and memory capabilities. In order to understand the synaptic organisation of olfactory information processing, the transmitter receptors of the antennal lobe need to be characterized. Using whole-cell patch-clamp recordings, we analysed the ligand-gated ionic currents of antennal lobe neurons in primary cell culture. Pressure applications of acetylcholine (ACh), gamma-amino butyric acid (GABA) or glutamate induced rapidly activating ionic currents. The ACh-induced current flows through a cation-selective ionotropic receptor with a nicotinic profile. The ACh-induced current is partially blocked by alpha-bungarotoxin. Epibatidine and imidacloprid are partial agonists. Our data indicate the existence of an ionotropic GABA receptor which is permeable to chloride ions and sensitive to picrotoxin (PTX) and the insecticide fipronil. We also identified the existence of a chloride current activated by pressure applications of glutamate. The glutamate-induced current is sensitive to PTX. Thus, within the honeybee antennal lobe, an excitatory cholinergic transmitter system and two inhibitory networks that use GABA or glutamate as their neurotransmitter were identified.