English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zube, C., Kleieneidam, C. J., Kirschner, S., Neef, J., & Rössler, W. (2008). Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus. The Journal of Comparative Neurology, 506(3), 425-441. doi:10.1002/cne.21548.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-0F71-2
Abstract
Ants rely heavily on olfaction for communication and orientation. Here we provide the first detailed structure-function analyses within an ant's central olfactory system asking whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits adaptations to processing many pheromonal and general odors. Using fluorescent tracing, confocal microscopy, and 3D-analyses we demonstrate that the antennal lobe (AL) contains up to approximately 460 olfactory glomeruli organized in seven distinct clusters innervated via seven antennal sensory tracts. The AL is divided into two hemispheres regarding innervation of glomeruli by either projection neurons (PNs) with axons leaving via the medial (m) or lateral (l) antennocerebral tract (ACT). M- and l-ACT PNs differ in their target areas in the mushroom-body calyx and lateral horn. Three additional ACTs project to the lateral protocerebrum only. We analyzed odor processing in AL glomeruli by retrograde loading of PNs with Fura-2 dextran and fluorimetric calcium imaging. Odor responses were reproducible and comparable across individuals. Calcium responses to pheromonal and nonpheromonal odors were very sensitive (10(-11) dilution) and patterns were partly overlapping, indicating that processing of both odor classes is not spatially segregated within the AL. Response patterns to the main trail-pheromone component nerolic acid remained stable over a wide range of intensities (7-8 log units), while response durations increased indicating that odor quality is maintained by a stable pattern and intensity is mainly encoded in response durations. The structure-function analyses contribute new insights into important aspects of odor processing in a highly advanced insect olfactory system.