English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neural language networks at birth

MPS-Authors
/persons/resource/persons19530

Anwander,  Alfred
Methods and Development Unit Cortical Networks and Cognitive Functions, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19821

Lohmann,  Gabriele
Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19643

Friederici,  Angela D.
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

pnas.201102991.pdf
(Postprint), 544KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., et al. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 16056-16061. doi:10.1073/pnas.1102991108.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0012-10F0-C
Abstract
The ability to learn language is a human trait. In adults and children, brain imaging studies have shown that auditory language activates a bilateral frontotemporal network with a left hemispheric dominance. It is an open question whether these activations represent the complete neural basis for language present at birth. Here we demonstrate that in 2-d-old infants, the language-related neural substrate is fully active in both hemispheres with a preponderance in the right auditory cortex. Functional and structural connectivities within this neural network, however, are immature, with strong connectivities only between the two hemispheres, contrasting with the adult pattern of prevalent intrahemispheric connectivities. Thus, although the brain responds to spoken language already at birth, thereby providing a strong biological basis to acquire language, progressive maturation of intrahemispheric functional connectivity is yet to be established with language exposure as the brain develops.