English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An electrostatic elliptical mirror for neutral polar molecules

MPS-Authors
/persons/resource/persons21566

Gonzalez Florez,  Ana Isabel
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21857

Meek,  Samuel A.
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21587

Haak,  Henrik
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21436

Conrad,  Horst
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22046

Santambrogio,  Gabriele
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21859

Meijer,  Gerard
Molecular Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

c1cp20957d.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Gonzalez Florez, A. I., Meek, S. A., Haak, H., Conrad, H., Santambrogio, G., & Meijer, G. (2011). An electrostatic elliptical mirror for neutral polar molecules. Physical Chemistry Chemical Physics, 13(42), 18830-18834. doi:10.1039/C1CP20957D.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-1A4F-8
Abstract
Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.