English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila

MPS-Authors
/persons/resource/persons38964

Leiss,  F.
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39095

Tavosanis,  G.
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Christiansen, F., Zube, C., Andlauer, T. F. M., Wichmann, C., Fouquet, W., Owald, D., et al. (2011). Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila. Journal of Neuroscience, 31(26), 9696-9707.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-1ED4-9
Abstract
Plastic changes at the presynaptic sites of the mushroom body (MB) principal neurons called Kenyon cells (KCs) are considered to represent a neuronal substrate underlying olfactory learning and memory. It is generally believed that presynaptic and postsynaptic sites of KCs are spatially segregated. In the MB calyx, KCs receive olfactory input from projection neurons (PNs) on their dendrites. Their presynaptic sites, however, are thought to be restricted to the axonal projections within the MB lobes. Here, we show that KCs also form presynapses along their calycal dendrites, by using novel transgenic tools for visualizing presynaptic active zones and postsynaptic densities. At these presynapses, vesicle release following stimulation could be observed. They reside at a distance from the PN input into the KC dendrites, suggesting that regions of presynaptic and postsynaptic differentiation are segregated along individual KC dendrites. KC presynapses are present in gamma-type KCs that support short-and long-term memory in adult flies and larvae. They can also be observed in alpha/beta-type KCs, which are involved in memory retrieval, but not in alpha'/beta'-type KCs, which are implicated in memory acquisition and consolidation. We hypothesize that, as in mammals, recurrent activity loops might operate for memory retrieval in the fly olfactory system. The newly identified KC-derived presynapses in the calyx are, inter alia, candidate sites for the formation of memory traces during olfactory learning.