English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neurons with cholinergic phenotype in the visual system of Drosophila

MPS-Authors
/persons/resource/persons39033

Raghu,  S. V.
Department: Systems and Computational Neurobiology / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39035

Reiff,  D. F.
Department: Systems and Computational Neurobiology / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38770

Borst,  A.
Department: Systems and Computational Neurobiology / Borst, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Raghu, S. V., Reiff, D. F., & Borst, A. (2011). Neurons with cholinergic phenotype in the visual system of Drosophila. The Journal of Comparative Neurology, 519(1), 162-176. doi:10.1002/cne.22512.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-1F19-9
Abstract
The optic lobe of Drosophila houses about 60,000 neurons that are organized in parallel, retinotopically arranged columns. Based on the Golgi-staining method, Fischbach and Dittrich ([1989] Cell Tissue Res 258:441-475) determined that each column contains about 90 identified cells. Each of these cells is supposed to release one or two different neurotransmitters. However, for most cells the released neurotransmitter is not known. Here we characterize the vast majority of the neurons in the Drosophila optic lobe that release acetylcholine (Ach), the major excitatory neurotransmitter of the insect central nervous system. We employed a promoter specific for cholinergic neurons and restricted its activity to single or a few cells using the MARCM technique. This approach allowed us to establish an anatomical map of neurons with a cholinergic phenotype based on their branching pattern. We identified 43 different types of neurons with a cholinergic phenotype. Thirty-one of them match previously described members of nine different subgroups: Transmedullary (Tm), Transmedullary Y (TmY), Medulla intrinsic (Mi, Mt, and Pm), Bushy T (T), Translobula Plate (Tlp), and Lobula intrinsic (Lcn and Lt) neurons (Fischbach and Dittrich [1989]). Intriguingly, 12 newly identified cell types suggest that previous Golgi studies were not saturating and that the actual number of different neurons per column is higher than previously thought. This study and similar ones on other neurotransmitter systems will contribute towards a columnar wiring diagram and foster the functional dissection of the visual circuitry in Drosophila. J. Comp. Neurol. 519:162-176, 2011. (C) 2010 Wiley-Liss, Inc.