Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

In Vivo Imaging of Partially Reversible Th17 Cell-Induced Neuronal Dysfunction in the Course of Encephalomyelitis

MPG-Autoren
/persons/resource/persons38863

Griesbeck,  O.
Research Group: Cellular Dynamics / Griesbeck, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39137

Zipp,  F.
Department: Neuroimmunology / Wekerle, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Siffrin, V., Radbruch, H., Glumm, R., Niesner, R., Paterka, M., Herz, J., et al. (2010). In Vivo Imaging of Partially Reversible Th17 Cell-Induced Neuronal Dysfunction in the Course of Encephalomyelitis. Immunity, 33(3), 424-436.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-1F65-C
Zusammenfassung
Neuronal damage in autoimmune neuroinflammation is the correlate for long-term disability in multiple sclerosis (MS) patients. Here, we investigated the role of immune cells in neuronal damage processes in animal models of MS by monitoring experimental autoimmune encephalomyelitis (EAE) by using two-photon microscopy of living anaesthetized mice. In the brainstem, we detected sustained interaction between immune and neuronal cells, particularly during disease peak. Direct interaction of myelin oligodendrocyte glycoprotein (MOG)-specific Th17 and neuronal cells in demyelinating lesions was associated with extensive axonal damage. By combining confocal, electron, and intravital microscopy, we showed that these contacts remarkably resembled immune synapses or kinapses, albeit with the absence of potential T cell receptor engagement. Th17 cells induced severe, localized, and partially reversible fluctuation in neuronal intracellular Ca2+ concentration as an early sign of neuronal damage. These results highlight the central role of the Th17 cell effector phenotype for neuronal dysfunction in chronic neuroinflammation.