English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Performance-related increases in hippocampal N-acetylaspartate (NAA) induced by spatial navigation training are restricted to BDNF val homozygotes

MPS-Authors
/persons/resource/persons19804

Kühn,  Simone
Department Cognitive Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Loevden, M., Schaefer, S., Noack, H., Kanowski, M., Kaufmann, J., Tempelmann, C., et al. (2011). Performance-related increases in hippocampal N-acetylaspartate (NAA) induced by spatial navigation training are restricted to BDNF val homozygotes. Cerebral Cortex, 21(6), 1435-1442. doi:10.1093/cercor/bhq230.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-2A37-3
Abstract
Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes. © The Author 2010. Published by Oxford University Press. All rights reserved.