English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bioenergy production potential of global biomass plantations under environmental and agricultural constraints

MPS-Authors

Beringer,  T.
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Beringer, T., Lucht, W., & Schaphoff, S. (2011). Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Global Change Biology Bioenergy, 3, 299-312. doi:10.1111/j.1757-1707.2010.01088.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-305C-F
Abstract
We estimate the global bioenergy potential from dedicated biomass plantations in the 21st century under a range of sustainability requirements to safeguard food production, biodiversity and terrestrial carbon storage. We use a process-based model of the land biosphere to simulate rainfed and irrigated biomass yields driven by data from different climate models and combine these simulations with a scenario-based assessment of future land availability for energy crops. The resulting spatial patterns of large-scale lignocellulosic energy crop cultivation are then investigated with regard to their impacts on land and water resources. Calculated bioenergy potentials are in the lower range of previous assessments but the combination of all biomass sources may still provide between 130 and 270 EJ yr(-1) in 2050, equivalent to 15-25% of the World's future energy demand. Energy crops account for 20-60% of the total potential depending on land availability and share of irrigated area. However, a full exploitation of these potentials will further increase the pressure on natural ecosystems with a doubling of current land use change and irrigation water demand. Despite the consideration of sustainability constraints on future agricultural expansion the large-scale cultivation of energy crops is a threat to many areas that have already been fragmented and degraded, are rich in biodiversity and provide habitat for many endangered and endemic species.