English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Token merging in language model-based confusible disambiguation

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

bnaic2009_paper_76.pdf
(Any fulltext), 103KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Stehouwer, H., & Van Zaanen, M. (2009). Token merging in language model-based confusible disambiguation. In T. Calders, K. Tuyls, & M. Pechenizkiy (Eds.), Proceedings of the 21st Benelux Conference on Artificial Intelligence (pp. 241-248).


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-3E71-D
Abstract
In the context of confusible disambiguation (spelling correction that requires context), the synchronous back-off strategy combined with traditional n-gram language models performs well. However, when alternatives consist of a different number of tokens, this classification technique cannot be applied directly, because the computation of the probabilities is skewed. Previous work already showed that probabilities based on different order n-grams should not be compared directly. In this article, we propose new probability metrics in which the size of the n is varied according to the number of tokens of the confusible alternative. This requires access to n-grams of variable length. Results show that the synchronous back-off method is extremely robust. We discuss the use of suffix trees as a technique to store variable length n-gram information efficiently.