Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Maximum gravitational-wave energy emissible in magnetar flares

MPG-Autoren
/persons/resource/persons40530

Owen,  Benjamin J.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1102.3421
(Preprint), 367KB

PRD83_104014.pdf
(beliebiger Volltext), 536KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Corsi, A., & Owen, B. J. (2011). Maximum gravitational-wave energy emissible in magnetar flares. Physical Review D, 83(10): 104014. doi:10.1103/PhysRevD.83.104014.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-0871-E
Zusammenfassung
Recent searches of gravitational-wave (GW) data raise the question of what maximum GW energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (\sim 10^{49} erg) predicted so far come from a model [K. Ioka, Mon. Not. Roy. Astron. Soc. 327, 639 (2001)] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10^{48}-10^{49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.