Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Max-min Online Allocations with a Reordering Puffer

MPG-Autoren
/persons/resource/persons45543

van Stee,  Rob
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Epstein, L., Levin, A., & van Stee, R. (2010). Max-min Online Allocations with a Reordering Puffer. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, & P. G. Spirakis (Eds.), Automata, Languages and Programming (pp. 336-347). Berlin: Springer. doi:10.1007/978-3-642-14165-2_29.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-1679-D
Zusammenfassung
We consider a scheduling problem where each job is controlled by a selfish agent, who is only interested in minimizing its own cost, which is defined as the total load on the machine that its job is assigned to. We consider the objective of maximizing the minimum load (cover) over the machines. Unlike the regular makespan minimization problem, which was extensively studied in a game theoretic context, this problem has not been considered in this setting before. We study the price of anarchy (\poa) and the price of stability (\pos). Since these measures are unbounded already for two uniformly related machines, we focus on identical machines. We show that the $\pos$ is 1, and we derive tight bounds on the $\poa$ for $m\leq6$ and nearly tight bounds for general $m$. In particular, we show that the $\poa$ is at least 1.691 for larger $m$ and at most 1.7. Hence, surprisingly, the $\poa$ is less than the $\poa$ for the makespan problem, which is 2. To achieve the upper bound of 1.7, we make an unusual use of weighting functions. Finally, in contrast we show that the mixed $\poa$ grows exponentially with $m$ for this problem, although it is only $\Theta(\log m/\log \log m)$ for the makespan. In addition we consider a similar setting with a different objective which is minimizing the maximum ratio between the loads of any pair of machines in the schedule. We show that under this objective for general $m$ the $\pos$ is 1, and the $\poa$ is 2.