Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Maximal Biconnected Subgraphs of Random Planar Graphs

MPG-Autoren
/persons/resource/persons45156

Panagiotou,  Konstantinos
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45547

Steger,  Angelika
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Panagiotou, K., & Steger, A. (2009). Maximal Biconnected Subgraphs of Random Planar Graphs. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 432-440). New York, NY: ACM.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-186E-8
Zusammenfassung
Let $\mathcal{C}$ be a class of labeled connected graphs, and let $C_n$ be a graph drawn uniformly at random from graphs in $\mathcal{C}$ that contain exactly $n$ vertices. Denote by~$b(\ell;\, C_n)$ the number of blocks (i.e.\ maximal biconnected subgraphs) of~$C_n$ that contain exactly~$\ell$ vertices, and let~$lb(C_n)$ be the number of vertices in a largest block of~$C_n$. We show that under certain general assumptions on~$\mathcal{C}$, $C_n$ belongs with high probability to one of the following categories: \begin{itemize} \item[(1)] $lb(C_n) \sim cn$, for some explicitly given $c = c(\mathcal{C})$, and the second largest block is of order $n^{\alpha}$, where $1 > \alpha = \alpha(\mathcal{C})$, or \item[(2)] $lb(C_n) = \mathcal{O}(\log n)$, i.e., all blocks contain at most logarithmically many vertices. \end{itemize} Moreover, in both cases we show that the quantity $b(\ell;\, C_n)$ is concentrated for all $\ell$, and we determine its expected value. As a corollary we obtain that the class of planar graphs belongs to category (1). In contrast to that, outerplanar and series-parallel graphs belong to category~(2).