English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

On Profit-Maximizing Pricing for the Highway and Tollbooth Problems

MPS-Authors
/persons/resource/persons44374

Elbassioni,  Khaled
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45251

Raman,  Rajiv
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45269

Ray,  Saurabh
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45495

Sitters,  Rene
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Elbassioni, K., Raman, R., Ray, S., & Sitters, R. (2009). On Profit-Maximizing Pricing for the Highway and Tollbooth Problems. In Algorithmic Game Theory (pp. 275-286). Berlin: Springer. doi:10.1007/978-3-642-04645-2_25.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-1894-E
Abstract
In the \emph{tollbooth problem}, we are given a tree $\bT=(V,E)$ with $n$ edges, and a set of $m$ customers, each of whom is interested in purchasing a path on the tree. Each customer has a fixed budget, and the objective is to price the edges of $\bT$ such that the total revenue made by selling the paths to the customers that can afford them is maximized. An important special case of this problem, known as the \emph{highway problem}, is when $\bT$ is restricted to be a line. For the tollbooth problem, we present a randomized $O(\log n)$-approximation, improving on the current best $O(\log m)$-approximation, since $n\leq 3m$ can be assumed. We also study a special case of the tollbooth problem, when all the paths that customers are interested in purchasing go towards a fixed root of $\bT$. In this case, we present an algorithm that returns a $(1-\epsilon)$-approximation, for any $\epsilon > 0$, and runs in quasi-polynomial time. On the other hand, we rule out the existence of an FPTAS by showing that even for the line case, the problem is strongly NP-hard.