Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

GigaVoxels: Ray-guided Streaming for Efficient and Detailed Voxel Rendering

MPG-Autoren

Eisemann,  Elmar
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Crassin, C., Neyret, F., Lefebvre, S., & Eisemann, E. (2009). GigaVoxels: Ray-guided Streaming for Efficient and Detailed Voxel Rendering. In ACM Symposium on Interactive 3D Graphics and Games (i3D) (pp. 15-22). New York, USA: ACM.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-19AF-C
Zusammenfassung
We propose a new approach to efficiently render large volumetric data sets. The system achieves interactive to real-time rendering performance for several billion voxels. Our solution is based on an adaptive data representation depending on the current view and occlusion information, coupled to an efficient ray-casting rendering algorithm. One key element of our method is to guide data production and streaming directly based on information extracted during rendering. Our data structure exploits the fact that in CG scenes, details are often concentrated on the interface between free space and clusters of density and shows that volumetric models might become a valuable alternative as a rendering primitive for real-time applications. In this spirit, we allow a quality/performance trade-off and exploit temporal coherence. We also introduce a mipmapping-like process that allows for an increased display rate and better quality through high quality filtering. To further enrich the data set, we create additional details through a variety of procedural methods. We demonstrate our approach in several scenarios, like the exploration of a 3D scan ($8192^3$ resolution), of hypertextured meshes ($16384^3$ virtual resolution), or of a fractal (theoretically infinite resolution). All examples are rendered on current generation hardware at 20-90 fps and respect the limited GPU memory budget.