Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Rigorous Analyses of Fitness-Proportional Selection for Optimizing Linear Functions

MPG-Autoren
/persons/resource/persons44584

Happ,  Edda
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons44705

Johannsen,  Daniel
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons44793

Klein,  Christian
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45115

Neumann,  Frank
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Happ, E., Johannsen, D., Klein, C., & Neumann, F. (2008). Rigorous Analyses of Fitness-Proportional Selection for Optimizing Linear Functions. In M. Keijzer, G. Antoniol., C. B. Congdon, K. Deb, B. Doerr, N. Hansen, et al. (Eds.), Genetic and Evolutionary Computation Conference 2008 (pp. 953-960). New York, NY: ACM. doi:10.1145/1389095.1389277.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-1CD9-9
Zusammenfassung
Rigorous runtime analyses of evolutionary algorithms (EAs) mainly investigate algorithms that use elitist selection methods. Two algorithms commonly studied are Randomized Local Search (RLS) and the (1+1)~EA and it is well known that both optimize any linear pseudo-Boolean function on $n$ bits within an expected number of $\ensuremath{{O}}(n \log n)$ fitness evaluations. In this paper, we analyze variants of these algorithms that use fitness proportional selection. A well-known method in analyzing the local changes in the solutions of RLS is a reduction to the gambler's ruin problem. We extend this method in order to analyze the global changes imposed by the (1+1)~EA. By applying this new technique we show that with high probability using fitness proportional selection leads to an exponential optimization time for any linear pseudo-Boolean function with non-zero weights. Even worse, all solutions of the algorithms during an exponential number of fitness evaluations differ with high probability in linearly many bits from the optimal solution. Our theoretical studies are complemented by experimental investigations which confirm the asymptotic results on realistic input sizes.