Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Seeing People in Different Light-joint Shape, Motion, and Reflectance Capture

MPG-Autoren
/persons/resource/persons45610

Theobalt,  Christian       
Computer Graphics, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons43978

Ahmed,  Naveed
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44911

Lensch,  Hendrik P. A.
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44965

Magnor,  Marcus
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Theobalt, C., Ahmed, N., Lensch, H. P. A., Magnor, M., & Seidel, H.-P. (2007). Seeing People in Different Light-joint Shape, Motion, and Reflectance Capture. IEEE Transactions on Visualization and Computer Graphics, 13(4), 663-674. doi:10.1109/TVCG.2007.1006.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-20A5-B
Zusammenfassung
By means of passive optical motion capture real people can be authentically
animated and photo-realistically textured. To import real-world characters into
virtual environments, however, also surface reflectance properties must be
known. We describe a video-based modeling approach that captures human shape
and motion as well as reflectance characteristics from a handful of
synchronized video recordings. The presented method is able to recover
spatially varying surface reflectance properties of clothes from multi-view
video footage.The resulting model description enables us to realistically
reproduce the appearance of animated virtual actors under different lighting
conditions, as well as to interchange surface attributes among different
people, e.g. for virtual dressing.Our contribution can be used to create
\mbox{3D} renditions of real-world people under arbitrary novel lighting
conditions on standard graphics hardware.