Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Weighted Minimal Hypersurface Reconstruction


Goldlücke,  Bastian
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;


Ihrke,  Ivo
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;
Computer Graphics, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Goldlücke, B., Ihrke, I., Linz, C., & Magnor, M. (2007). Weighted Minimal Hypersurface Reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7), 1194-1208. doi:10.1109/TPAMI.2007.1146.

Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-217A-5
Many problems in computer vision can be formulated as a minimization problem for an energy functional. If this functional is given as an integral of a scalar-valued weight function over an unknown hypersurface, then the sought-after minimal surface can be determined as a solution of the functional's Euler-Lagrange equation. This paper deals with a general class of weight functions that may depend on surface point coordinates as well as surface orientation. We derive the Euler-Lagrange equation in arbitrary dimensional space without the need for any surface parameterization, generalizing existing proofs. Our work opens up the possibility of solving problems involving minimal hypersurfaces in a dimension higher than three, which were previously impossible to solve in practice. We also introduce two applications of our new framework: We show how to reconstruct temporally coherent geometry from multiple video streams, and we use the same framework for the volumetric reconstruction of refractive and transparent natural phenomena, here bodies of flowing water.