Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Fully Computational Model for Predicting Percutaneous Drug Absorption

MPG-Autoren
/persons/resource/persons45028

Merkwirth,  Christian
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44907

Lengauer,  Thomas
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Neumann, D., Kohlbacher, O., Merkwirth, C., & Lengauer, T. (2006). A Fully Computational Model for Predicting Percutaneous Drug Absorption. Journal of Chemical Information and Modeling, 46(1), 424-429. doi:10.1021/ci050332t.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-21E1-E
Zusammenfassung
The prediction of transdermal absorption for arbitrary penetrant structures has
several important applications in the pharmaceutical industry. We propose a new
data-driven, predictive model for skin permeability coefficients kp based on an
ensemble model using k-nearest-neighbor models and ridge regression. The model
was trained and validated with a newly assembled data set containing
experimental data and structures for 110 compounds. On the basis of three
purely computational descriptors (molecular weight, calculated octanol/water
partition coefficient, and solvation free energy), we have developed a model
allowing for the reliable, purely computational prediction of skin permeability
coefficients. The model is both accurate and robust, as we showed in an
extensive validation (correlation coefficient for leave-one-out cross
validation: Q = 0.948, mean standard error: 0.2 for log kp).