日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Matching Algorithms are Fast in Sparse Random Graphs

MPS-Authors
/persons/resource/persons44076

Bast,  Holger
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45363

Schäfer,  Guido
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45588

Tamaki,  Hisao
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Bast, H., Mehlhorn, K., Schäfer, G., & Tamaki, H. (2006). Matching Algorithms are Fast in Sparse Random Graphs. Theory of Computing Systems, 39, 3-14.


引用: https://hdl.handle.net/11858/00-001M-0000-000F-2361-9
要旨
We present an improved average case analysis of the maximum cardinality matching problem. We show that in a bipartite or general random graph on $n$ vertices, with high probability every non-maximum matching has an augmenting path of length $O(\log n)$. This implies that augmenting path algorithms like the Hopcroft--Karp algorithm for bipartite graphs and the Micali--Vazirani algorithm for general graphs, which have a worst case running time of $O(m\sqrt{n})$, run in time $O(m \log n)$ with high probability, where $m$ is the number of edges in the graph. Motwani proved these results for random graphs when the average degree is at least $\ln (n)$ [\emph{Average Case Analysis of Algorithms for Matchings and Related Problems}, Journal of the ACM, \textbf{41}(6), 1994]. Our results hold, if only the average degree is a large enough constant. At the same time we simplify the analysis of Motwani.