Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Textures Revisited

MPG-Autoren
/persons/resource/persons45769

Yamauchi,  Hitoshi
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44911

Lensch,  Hendrik P. A.
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44557

Haber,  Jörg
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen

https://rdcu.be/dHi6F
(Verlagsversion)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yamauchi, H., Lensch, H. P. A., Haber, J., & Seidel, H.-P. (2005). Textures Revisited. The Visual Computer, 21, 217-241. doi:10.1007/s00371-005-0283-5.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-27DF-2
Zusammenfassung
We describe texture generation methods for complex objects. Recent 3D
scanning devices and high-resolution cameras can
capture complex geometry of an object and provide high-resolution
images. However, generating a textured model from this input
data is still a difficult problem.

This task is divided into three sub-problems: parameterization, texture
combination, and texture restoration. A low distortion parameterization
method is presented, which minimizes geometry stretch
energy. Photographs of the object taken from multiple viewpoints under
modestly uncontrolled illumination conditions are merged into a seamless
texture by our new texture combination method.

We also demonstrate a texture restoration method which can fill in
missing pixel information when the input photographs do not provide
sufficient information to cover the entire surface due to
self-occlusion or registration errors.

Our methods are fully automatic except the registration between a 3D
model with input photographs. We demonstrate the application of our
method to human face models for evaluation. The techniques presented in
this paper make a consistent and complete pipeline to generate a
texture of a complex object.