English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamic Mesh Optimization for Polygonized Implicit Surfaces with Sharp Features

MPS-Authors
/persons/resource/persons45141

Ohtake,  Yutaka
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44112

Belyaev,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Ohtake, Y., Belyaev, A., & Pasko, A. (2003). Dynamic Mesh Optimization for Polygonized Implicit Surfaces with Sharp Features. The Visual Computer, 19, 115-126.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-2CC2-9
Abstract
The paper presents a novel approach for accurate polygonization of implicit surfaces with sharp features. The approach is based on mesh evolution towards a given implicit surface with simultaneous control of the mesh vertex positions and mesh normals. Given an initial polygonization of an implicit surface, a mesh evolution process initialized by the polygonization is used. The evolving mesh converges to a limit mesh which delivers a high quality approximation of the implicit surface. For analyzing how close the evolving mesh approaches the implicit surface we use two error metrics. The metrics measure deviations of the mesh vertices from the implicit surface and deviations of mesh normals from the normals of the implicit surface.