Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Dynamic Remeshing and Applications

MPG-Autoren
/persons/resource/persons45679

Vorsatz,  Jens
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45303

Rössl,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vorsatz, J., Rössl, C., & Seidel, H.-P. (2003). Dynamic Remeshing and Applications. In G. Elber, & V. Shapiro (Eds.), Proceedings of the 8th ACM Symposium on Solid Modeling and Applications (pp. 167-175). New York, USA: ACM.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-2CC6-1
Zusammenfassung
Triangle meshes are a flexible and generally accepted boundary
representation for complex geometric shapes. In addition to their
geometric qualities and topological simplicity, \emph{intrinsic}
qualities such as the shape of the triangles, their distribution on
the surface and the connectivity are essential for many algorithms
working on them. In this paper we present a flexible and efficient
remeshing framework that improves these intrinsic properties while
keeping the mesh geometrically close to the original surface. We
use a particle system approach and combine it with an incremental
connectivity optimization process to trim the mesh towards the
requirements imposed by the user. The particle system uniformly
distributes the vertices on the mesh, whereas the connectivity
optimization is done by means of \emph{Dynamic Connectivity Meshes},
a combination of local topological operators that lead to a fairly
regular connectivity. A dynamic skeleton ensures that our approach
is able to preserve surface features, which are particularly
important for the visual quality of the mesh. None of the
algorithms requires a global parameterization or patch layouting in
a preprocessing step but uses local parameterizations only. We also
show how this general framework can be put into practice and sketch
several application scenarios. In particular we will show how the
users can adapt the involved algorithms in a way that the resulting
remesh meets their personal requirements.