Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Finite-Control Mobile Ambients

MPG-Autoren
/persons/resource/persons44232

Charatonik,  Witold
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45585

Talbot,  Jean-Marc
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Charatonik, W., Gordon, A. D., & Talbot, J.-M. (2002). Finite-Control Mobile Ambients. In Programming languages and systems: 11th European Symposium on Programming, ESOP 2002. Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002 (pp. 295-313). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-2F8F-7
Zusammenfassung
We define a finite-control fragment of the ambient calculus, a formalism for describing distributed and mobile computations. A series of examples demonstrates the expressiveness of our fragment. In particular, we encode the choice-free, finite-control, synchronous $\pi$-calculus. We present an algorithm for model checking this fragment against the ambient logic (without composition adjunct). This is the first proposal of a model checking algorithm for ambients to deal with recursively-defined, possibly nonterminating, processes. Moreover, we show that the problem is PSPACE-complete, like other fragments considered in the literature. Finite-control versions of other process calculi are obtained via various syntactic restrictions. Instead, we rely on a novel type system that bounds the number of active ambients and outputs in a process; any typable process has only a finite number of derivatives.