Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Improved Routing and Sorting on Multibutterflies

MPG-Autoren
/persons/resource/persons45673

Vöcking,  Berthold
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Maggs, B. M., & Vöcking, B. (2000). Improved Routing and Sorting on Multibutterflies. Algorithmica, 28(4), 438-464. Retrieved from http://link.springer.de/link/service/journals/00453/contents/00/10049/paper/10049.pdf.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-33C3-4
Zusammenfassung
This paper shows that an $N$-node AKS network (as described by Paterson) can be embedded in a $\frac{3N}{2}$-node degree-8 multibutterfly network with load 1, congestion 1, and dilation 2. The result has several implications, including the first deterministic algorithms for sorting and finding the median of $n \log n$ keys on an $n$-input multibutterfly in $O(\log n)$ time, a work-efficient deterministic algorithm for finding the median of $n \log^2 n \log\log n$ keys on an $n$-input multibutterfly in $O(\log n \log\log n)$ time, and a three-dimensional VLSI layout for the $n$-input AKS network with volume $O(n^{3/2})$. While these algorithms are not practical, they provide further evidence of the robustness of multibutterfly networks. We also present a separate, and more practical, deterministic algorithm for routing $h$ relations on an $n$-input multibutterfly in $O(h + \log n)$ time. Previously, only algorithms for solving $h$ one-to-one routing problems were known. Finally, we show that a 2-folded butterfly, whose individual splitters do not exhibit expansion, can emulate a bounded-degree multibutterfly with $(\alpha,\beta)$-expansion, for any $\alpha \cdot \beta < 1/4$.