Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

The constrained crossing minimization problem: a first approach

MPG-Autoren
/persons/resource/persons45092

Mutzel,  Petra
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45807

Ziegler,  Thomas
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mutzel, P., & Ziegler, T. (1999). The constrained crossing minimization problem: a first approach. In P. Kall, & H.-J. Lüthi (Eds.), Operations Research Proceedings 1998 (pp. 125-134). Berlin: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-3611-B
Zusammenfassung
We investigate the {\em constrained crossing minimization problem} for graphs defined as follows. Given a connected, planar graph $G=(V,E)$, a combinatorial embedding $\Pi(G)$ of $G$, and a set of pairwise distinct edges $F\subseteq V\times V$, find a drawing of $G\cup F$ in the plane such that the combinatorial embedding $\Pi(G)$ of $G$ is preserved and the number of edge crossings is minimum. This problem arises in the context of automatic graph drawing. Here, the so--called planarization method transforms a general graph into a planar graph and then applies planar graph drawing methods to it. First we show NP--hardness of this problem. Then we formulate an $|F|$--pairs shortest walks problem on an extended dual graph, where the number of crossings between the walks is added to the cost function. We show that this dual problem is equivalent to our original problem. Our approach to solve the dual problem is based on polyhedral combinatorics. We investigate an ILP--formulation and present first computational results using a branch--and--cut algorithm based on ABACUS.