Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Decidable fragments of simultaneous rigid reachability

MPG-Autoren
/persons/resource/persons44263

Cortier,  V.
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44474

Ganzinger,  Harald
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44688

Jacquemard,  Florent
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45662

Veanes,  Margus
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cortier, V., Ganzinger, H., Jacquemard, F., & Veanes, M. (1999). Decidable fragments of simultaneous rigid reachability. In J. Wiedermann, P. van Emde Boas, & M. Nielsen (Eds.), Proceedings of the 26th International Colloquium on Automata, Languages and Programming (ICALP-99) (pp. 250-260). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-3640-1
Zusammenfassung
In this paper we prove decidability results of restricted fragments of simultaneous rigid reachability or SRR, that is the nonsymmetrical form of simultaneous rigid E-unification or SREU. The absence of symmetry enforces us to use different methods, than the ones that have been successful in the context of SREU (for example word equations). The methods that we use instead, involve finite (tree) automata techniques, and the decidability proofs provide precise computational complexity bounds. The main results are 1) monadic SRR with ground rule is PSPACE-complete, and 2) balanced SRR with ground rules is EXPTIME-complete. These upper bounds have been open already for corresponding fragments of SREU, for which only the hardness results have been known. The first result indicates the difference in computational power between fragments of SREU with ground rules and nonground rules, respectively, due to a straightforward encoding of word equations in monadic SREU (with nonground rules). The second result establishes the decidability and precise complexity of the largest known subfragment of nonmonadic SREU.