Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Parallelization of Dijkstra's Shortest Path Algorithm

MPG-Autoren
/persons/resource/persons44266

Crauser,  Andreas
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45038

Meyer,  Ulrich
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45344

Sanders,  Peter
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Crauser, A., Mehlhorn, K., Meyer, U., & Sanders, P. (1998). A Parallelization of Dijkstra's Shortest Path Algorithm. In L. Brim, J. Gruska, & J. Zlatuška (Eds.), Mathematical Foundations of Computer Science 1998 (pp. 722-731). Berlin, Germany: Springer. doi:10.1007/BFb0055823.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-372F-7
Zusammenfassung
The single source shortest path (SSSP) problem lacks parallel solutions which are fast and simultaneously work-efficient. We propose simple criteria which divide Dijkstra's sequential SSSP algorithm into a number of phases, such that the operations within a phase can be done in parallel. We give a PRAM algorithm based on these criteria and analyze its performance on random digraphs with random edge weights uniformly distributed in $[0,1]$. We use the ${\cal G}(n,d/n)$ model: the graph consists of $n$~nodes and each edge is chosen with probability $d/n$. Our PRAM algorithm needs ${\cal O}(n^{1/3} \log n)$ time and ${\cal O}(n \log n+dn)$ work with high probability (whp). We also give extensions to external memory computation. Simulations show the applicability of our approach even on non-random graphs.