English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

All-Pairs Min-Cut in Sparse Networks

MPS-Authors

Arikati,  Srinivasa Rao
Max Planck Society;

/persons/resource/persons44233

Chaudhuri,  Shiva
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45787

Zaroliagis,  Christos
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Arikati, S. R., Chaudhuri, S., & Zaroliagis, C. (1998). All-Pairs Min-Cut in Sparse Networks. Journal of Algorithms, 29, 82-110.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-374E-1
Abstract
Algorithms are presented for the all-pairs min-cut problem in bounded tree-width, planar and sparse networks. The approach used is to preprocess the input $n$-vertex network so that, afterwards, the value of a min-cut between any two vertices can be efficiently computed. A tradeoff is shown between the preprocessing time and the time taken to compute min-cuts subsequently. In particular, after an $O(n\log n)$ preprocessing of a bounded tree-width network, it is possible to find the value of a min-cut between any two vertices in constant time. This implies that for such networks the all-pairs min-cut problem can be solved in time $O(n^2)$. This algorithm is used in conjunction with a graph decomposition technique of Frederickson to obtain algorithms for sparse and planar networks. The running times depend upon a topological property, $\gamma$, of the input network. The parameter $\gamma$ varies between 1 and $\Theta(n)$; the algorithms perform well when $\gamma = o(n)$. The value of a min-cut can be found in time $O(n + \gamma^2 \log \gamma)$ and all-pairs min-cut can be solved in time $O(n^2 + \gamma^4 \log \gamma)$ for sparse networks. The corresponding running times for planar networks are $O(n+\gamma \log \gamma)$ and $O(n^2 + \gamma^3 \log \gamma)$, respectively. The latter bounds depend on a result of independent interest: outerplanar networks have small ``mimicking'' networks which are also outerplanar.