User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Conference Paper

Structural decidable extensions of bounded quantification


Vorobyov,  Sergei
Programming Logics, MPI for Informatics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Vorobyov, S. (1995). Structural decidable extensions of bounded quantification. In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL'95) (pp. 164-175). New York, USA: ACM.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-AD20-4
We show how the subtype relation of the well-known system Fsub, the second-order polymorphic lambda-calculus with bounded universal type quantification and subtyping, due to Cardelli, Wegner, Bruce, Longo, Curien, Ghelli, proved undecidable by Pierce (POPL'92), can be interpreted in the (weak) monadic second-order theory of one (B\"uchi), two (Rabin), several, or infinitely many successor functions. These (W)SnS-interpretations show that the undecidable system Fsub possesses consistent decidable extensions, i.e., Fsub is not essentially undecidable (Tarski, 1949). \par We demonstrate an infinite class of structural decidable extensions of Fsub, which combine traditional subtype inference rules with the above (W)SnS-interpretations. All these extensions, which we call systems FsubSnS, are still more powerful than Fsub, but less coarse than the direct (W)SnS-interpretations. \par The main distinctive features of the systems FsubSnS are: 1) decidability, 2) closure w.r.t.\ transitivity; 3) structuredness, e.g., they never subtype a functional type to a universal one or vice versa, 4) they all contain the powerful rule for subtyping boundedly quantified types.