User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse





First Observation of Spin Flips with a Single Proton Stored in a Cryogenic Penning Trap


Ulmer,  Stefan
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

(Any fulltext), 11MB

Supplementary Material (public)
There is no public supplementary material available

Ulmer, S. (2011). First Observation of Spin Flips with a Single Proton Stored in a Cryogenic Penning Trap. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg, Germany.

Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-3E10-4
In this thesis the very first observation of spin transitions of a single proton stored in a cryogenic double-Penning trap is presented. The experimental observation of spin transitions is based on the continuous Stern-Gerlach effect, which couples the spin of the single trapped proton to its axial eigenfrequency, by means of an inhomogeneous magnetic field. A spin transition causes a change of the axial frequency, which can be measured non-destructively. Due to the tiny magnetic moment of the proton, the direct detection of proton spin-flips is an exceeding challenge. To achieve spin-flip resolution, the proton was stored in the largest magnetic field inhomogeneity, which has ever been superimposed to a Penning trap, and its axial frequency was detected non-destructively. Therefore, superconducting detection systems with ultrahigh-sensitivity were developed, allowing the direct observation of the single trapped proton, as well as the high-precision determination of its eigenfrequencies. Based on novel experimental methods, which were developed in the framework of this thesis, the axial frequency of the particle was stabilized to a level, where the observation of single-proton spin-flips is possible, which was demonstrated. This experimental success is one of the most important steps towards the high-precision determination of the magnetic moment of the free proton. With the very first observation of spin transitions with a single trapped proton, a highly exciting perspective opens. All experimental techniques which were developed in this thesis can be directly applied to the antiproton. Thus, the first high-precision measurement of the magnetic moment of the antiproton becomes possible. This will provide a new high-precision test of the matterantimatter symmetry.