Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Competition between polar and nonpolar growth of MgO thin films on Au(111)

MPG-Autoren
/persons/resource/persons21916

Nilius,  Niklas
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Benedetti, S., Nilius, N., Torelli, P., Renaud, G., Freund, H.-J., & Valeri, S. (2011). Competition between polar and nonpolar growth of MgO thin films on Au(111). The Journal of Physical Chemistry C, 115(46), 23043-23049. doi:10.1021/jp207901a.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-3E9F-4
Zusammenfassung
We report a growth study of MgO thin films on an Au(111) support, performed with scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy-electron and X-ray-diffraction techniques. Depending on the deposition temperature, the O2 partial pressure, and the availability of water during oxide formation, two growth regimes can be distinguished. At high oxygen pressure, the MgO mainly adopts a square-lattice configuration and exposes the nonpolar (001) surface, whereas at low O2 pressure a hexagonal lattice develops that resembles the (111) surface of rocksalt MgO. For films beyond the monolayer limit, the emerging electrostatic dipole along the MgO(111) direction becomes important for the film morphology. Depending on the preparation conditions, the system takes either structural or adsorption-mediated routes to remove the polarity. Whereas surface roughening is identified as main polarity-compensation mechanism at perfect vacuum conditions, hydroxylation becomes important if water is present during oxide growth